Velocity response curves support the role of continuous entrainment in circadian clocks.

نویسندگان

  • Stephanie R Taylor
  • Alexis B Webb
  • Katherine S Smith
  • Linda R Petzold
  • Francis J Doyle
چکیده

Circadian clocks drive endogenous oscillations in organisms across the tree of life. The Earth's daily light/dark cycle entrains these clocks to the environment. Two major theories of light entrainment have been presented in the literature. The discrete theory emphasizes the instantaneous phase-shifting behavior of short pulses of light, and the continuous theory emphasizes changes to the period of oscillations in constant-light conditions. Historically, the primary tool for predicting and understanding discrete entrainment has been the PRC, which measures discrete adjustments to the clock's phase. The authors present a unified theory, which relies on a velocity response curve (VRC), similar in shape to a PRC, but that describes continuous adjustments to the clock's speed. The VRC explains data from both discrete and continuous light experiments and is therefore an invaluable tool to understand entrainment. The authors relate VRC features to specific entrainment behaviors, such as seasonal adjustments to the phase of entrainment. Furthermore, they estimate a VRC from PRC data and successfully reproduce additional PRC data. Finally, they entrain a VRC-based model to natural light/dark cycles, demonstrating the unified theory's ability to predict clock behavior in the face of a fluctuating signal. The results indicate that a VRC-based model not only provides a comprehensive understanding of entrainment but also has excellent predictive capabilities.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust entrainment of circadian oscillators requires specific phase response curves.

The circadian clocks keeping time in many living organisms rely on self-sustained biochemical oscillations entrained by external cues, such as light, to the 24-h cycle induced by Earth's rotation. However, environmental cues are unreliable due to the variability of habitats, weather conditions, or cue-sensing mechanisms among individuals. A tempting hypothesis is that circadian clocks have evol...

متن کامل

Temperature effects on circadian clocks

Periodic temperature changes represent one of the most effective entraining (Zeitgeber) signals for circadian clocks in many organisms. Different constant temperatures affect the circadian amplitude and ultimately the expression of circadian clocks, while the circadian period length (tau) remains approximately constant (temperature compensation). Experimental results and theoretical models are ...

متن کامل

Adaptive Temperature Compensation in Circadian Oscillations

A temperature independent period and temperature entrainment are two defining features of circadian oscillators. A default model of distributed temperature compensation satisfies these basic facts yet is not easily reconciled with other properties of circadian clocks, such as many mutants with altered but temperature compensated periods. The default model also suggests that the shape of the cir...

متن کامل

Entrainment concepts revisited.

The traditional approaches to predict entrainment of circadian clocks by light are based on 2 concepts that were never successfully unified: the non-parametric approach assumes that entrainment occurs via discrete daily phase shifts while the parametric approach assumes that entrainment involves changes of the clock's velocity. Here the authors suggest a new approach to predict and model entrai...

متن کامل

Photic entrainment of period mutant mice is predicted from their phase response curves.

A fundamental property of circadian clocks is that they entrain to environmental cues. The circadian genes, Period1 and Period2, are involved in entrainment of the mammalian circadian system. To investigate the roles of the Period genes in photic entrainment, we constructed phase response curves (PRC) to light pulses for C57BL/6J wild-type, Per1(-/-), Per2(-/-), and Per3(-/-) mice and tested wh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of biological rhythms

دوره 25 2  شماره 

صفحات  -

تاریخ انتشار 2010